A MIT-Based Nonlinear Adaptive Set-Membership Filter for the Ellipsoidal Estimation of Mobile Robots' States
نویسندگان
چکیده
منابع مشابه
Set Membership Estimation of Nonlinear Regressions
In this paper we propose a method, based on a Set Membership approach, for the estimation of nonlinear regressions models. At the contrary of most of the existing identi...cation approaches, the method presented in this paper does not need any assumption about the functional form of the model to be identi...ed, but uses only some prior information on its regularity and on the size of noise corr...
متن کاملA Family of Set-membership Affine Projection Adaptive Filter Algorithms
In this paper, we extend the set-membership (SM) adaptive filtering approach to the various affine projection (AP) adaptive filter algorithms to propose the computationally efficient algorithms. Based on this, the SM-APA, SM selective regressor APA (SM-SR-APA), SM dynamic selection APA (SM-DS-APA) and SM selective partial update APA (SM-SPU-APA) are established. The SM-SR-APA reduces complexity...
متن کاملSet membership localization of mobile robots via angle measurements
This paper addresses the localization problem for a mobile robot navigating in an unstructured outdoor environment. A new technique is introduced, for computing an estimate of the position of the robot and the related uncertainty region, in the presence of visual angle measurements affected by bounded errors. The proposed set membership estimation procedure exploits the structure of the static ...
متن کاملNonlinear set-membership estimation: a support vector machine approach
In this paper a support vector machine (SVM) approach for characterizing the feasible parameter set (FPS) in non-linear set-membership estimation problems is presented. It iteratively solves a regression problem from which an approximation of the boundary of the FPS can be determined. To guarantee convergence to the boundary the procedure includes a no-derivative line search and for an appropri...
متن کاملA New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Robotic Systems
سال: 2012
ISSN: 1729-8814,1729-8814
DOI: 10.5772/51904